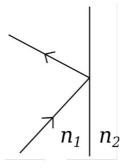
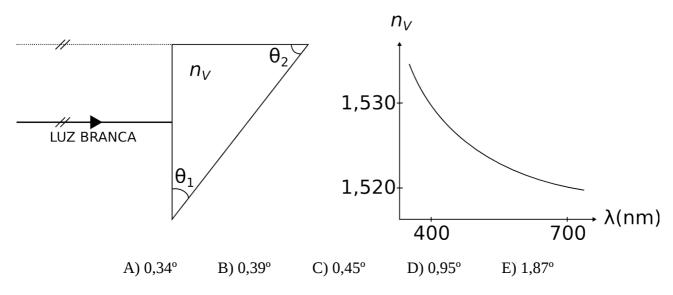


	TURMA:
NOME:	Nota:
PROF.:	


Importante: Assine a primeira página do cartão de questões e a folha do cartão de respostas.

- 1)Leia os enunciados com atenção.
- 2) Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar erros.
- 3)A não ser que seja instruído diferentemente: Assinale uma das alternativas das questões;
- 4)Nas questões com caráter numérico assinale a resposta mais próxima da obtida por você.


- 1) Considere a figura abaixo, que mostra a tela de visualização de um experimento de Fenda Dupla.
- (i) O que acontecerá com espaçamento entre as franjas se o comprimento de onda da luz incidente for diminuído? (ii) O que acontecerá com espaçamento entre as franjas se a distância entre as fendas e a tela for diminuída?

- A) i- aumenta / ii- aumenta
- B) i- aumenta / ii- diminui
- C) i- diminui / ii- aumenta
- D) i- diminui / ii- diminui
- E) i- aumenta / ii- aumenta
- 2) Um raio de luz incide na fronteira entre dois materiais transparentes, e é totalmente refletido, como mostrado na figura. O que se pode concluir sobre os índices de refração dos materiais?
- A) $n1 \ge n2$
- B) n1 > n2
- C) n1 = n2
- D) $n2 \ge n1$
- E) n2 > n1

- 3) Uma lente convergente tem distância focal f. Um objeto é localizado entre f e 2f em relação a uma linha perpendicular ao centro da lente. A imagem formada é localizada em qual distância da lente?
- A) 2f
- B) entre f e 2f
- C) f
- D) entre a lente e f
- E) mais distante que 2f.
- 4) Uma lente é utilizada para a formação de uma imagem de um objeto que é colocado a sua frente.
- A) Se a lente é convergente, a imagem não pode ser virtual.
- B) Se a imagem é real, ela deve ser invertida.
- C) Se a imagem é real, ela deve ser direita.
- D) Se a imagem é virtual, ela deve ser invertida.
- E) Se a imagem é virtual, a lente tem que ser divergente.
- 5) Um espelho côncavo tem raio de curvatura de 45cm. A que distância do espelho um objeto deve ser posicionado a fim de criar uma imagem direita três vezes maior do que a altura do objeto?
 - A) 27cm
- B) 30cm
- C) 20cm
- D) 53cm
- E) 60cm
- F) 90cm
- 6) Uma fenda dupla é iluminada simultaneamente com luz laranja de 600 nm e com outra onda de comprimento de onda desconhecido. A franja brilhante correspondente a m=4 devido ao comprimento de onda desconhecido se sobrepõe à franja clara laranja correspondente a m=3. Qual é o valor do comprimento de onda desconhecido?
 - A) 300nm
- B) 450m
- C) 550nm
- D) 650nm
- E) 750nm
- 7) Luz branca entra em um prisma θ_1 =30°, θ_2 =60°, 90° como indicado na figura. A curva de dispersão fornece o índice de refração do material do prisma para diversos comprimentos de onda. Qual é o ângulo entre os feixes de luz violeta (400nm) e vermelho (700nm) quando estes saem do prisma? Considere n_{ar} =1,000.

- 8) Luz verde, de comprimento de onda igual a 500 nm, incide sobre duas fendas estreitas, de largura 0,1 mm e espaçadas uma da outra por 0,5 mm. Qual máximo de interferência será cancelado pelo primeiro mínimo de difração?
- A) O segundo.
- B) O quinto.
- C) O décimo.
- D) O décimo quinto.
- E) O vigésimo.
- F) O quinquagésimo.
- G) O centésimo.
- H) Nenhum.
- 9) Uma fonte de luz branca é constituído de uma mistura das seguintes cores: azul (comprimento de onda de 400 nm), verde (comprimento de onda de 500 nm), laranja (comprimento de onda de 600 nm) e vermelho (comprimento de onda de 700 nm). Um estudante observa os padrões de interferência gerados por esta luz quando ela incide sobre uma rede de difração com 100 linhas/mm em um anteparo a 2,0 metros de distância. Qual o espaçamento entre os primeiros máximos de interferência das cores verde e laranja? (Considere, para a resolução deste problema, a aproximação para pequenos ângulos)
- A) 2,0 cm.
- B) 4,0 cm.
- C) 6,0 cm.
- D) 8,0 cm.
- E) 10,0 cm.
- 10) Um estudante observa o comportamento de um laser incidindo em um interferômetro de Michelson. Após anotar o quanto teve de mover um dos espelhos para contar a passagem de 100 franjas luminosas, ele retorna o interferômetro à sua posição original e troca o laser utilizado por outro de MAIOR comprimento de onda. I) Para contar a passagem do mesmo número de franjas luminosas, ele terá de mover mais ou menos o espelho? II) Se ele andar a mesma distância com o espelho, ele contará mais ou menos franjas luminosas?
- A) I mais; II menos.
- B) I mais; II mais.
- C) I menos; II menos.
- D) I menos; II mais.
- E) É impossível afirmar sem saber quanto o espelho andou no primeiro experimento.

- 11) Uma pessoa segura uma lente convergente a 8,0 cm de um objeto de 2,0 cm de extensão, vendo uma imagem virtual de 6,0 cm de extensão. Qual a distância focal desta lente?
- A) 16,0 cm
- B) 15,0 cm
- C) 12,0 cm
- D) 10,0 cm
- E) 8,0 cm
- F) 2,0 cm
- 12) Um raio luminoso incide com um ângulo de 30° em uma janela cujo vidro possui 1,0 cm de espessura e índice de refração de 1,50. Marca-se a posição, em uma parede a 1,0 m de distância da janela, em que o raio luminoso a atinge após atravessar o vidro, bem como a posição na qual ele a atinge quando a janela está aberta (i.e., o raio não sofre mudança de meio em sua trajetória). Ao aumentar em 20% a espessura do vidro, o que ocorre com i) o ângulo com que o raio deixa o vidro; e ii) a distância entre as posições com que o raio atinge a parede com a janela fechada e aberta? Considere o índice de refração do ar como sendo $n_{ar} = 1,00$.
- A) i) Aumenta; ii) Aumenta
- B) i) Aumenta; ii) Diminui
- C) i) Diminui; ii) Aumenta
- D) i) Diminui; ii) Diminui
- E) i) Não muda; ii) Aumenta
- F) i) Não muda; ii) Diminui
- 13) Uma pessoa mede 1,80 m de altura. Qual a menor altura possível de um espelho plano para que esta pessoa consiga se enxergar completamente nele?
- A) 80,0 cm
- B) 85,0 cm
- C) 90,0 cm
- D) 95,0 cm
- E) 100,0 cm
- F) 105,0 cm
- G) 110,0 cm

$$1 mm = 1,0 \ X \ 10^{-3} \ m \ \bullet \ 1 \ \mu m = 1,0 \ X \ 10^{-6} \ m \ \bullet \ 1 \ nm = 1,0 \ X \ 10^{-9} \ m$$

$$D(x,t) = Asen(kx \pm wt + \phi_0) = Asen(2\pi \left(\frac{x}{\lambda} \pm \frac{t}{T}\right) + \phi_0)$$

$$Asen(kx - wt + \phi_1) + Asen(kx + wt + \phi_2) = 2 \ Acos\left(wt + \frac{\phi_2 - \phi_1}{2}\right) \times sen\left(kx + \frac{\phi_1 + \phi_2}{2}\right)$$

$$Asen(k_1x - w_1t) + Asen(k_2x - w_2t) = 2 \ Acos\left(\frac{k_1 - k_2}{2}x - \frac{w_1 - w_2}{2}t\right) \times sen\left(\frac{k_1 + k_2}{2}x - \frac{w_1 + w_2}{2}t\right)$$

$$v_{som} \approx 340 \ m/s \ \bullet \ c = 3,0 \times 10^8 \ m/s \ \bullet \ Interferometria: \Delta m = \frac{2\Delta L}{\lambda}; m = 0,1,2...$$

$$\beta = (10 \ dB) \log_{10}\left(\frac{I}{I_0}\right) \beta_{relativo} = (10 \ dB) \log_{10}\left(\frac{I_2}{I_1}\right) I_0 = 1,0 \ X \ 10^{-12} \frac{W}{m^2}. \ \bullet \ v_{corda} = \sqrt{\frac{T}{\mu}}$$

$$Tubo_{abert - abert}: L = m. \frac{\lambda}{2}; m = 1,2,3,4... \quad Tubo_{abrt - fec \ hd}: L = n. \frac{\lambda}{4}; n = 1,3,5,7...$$

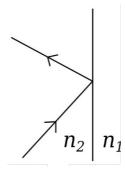
Máx. de interferência: $dsen(\theta_m) = m\lambda$; $m = 0, \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $asen(\theta_p) = p\lambda$; $asen(\theta_p$

Mín. difração circular:
$$\theta_1 = \frac{1,22 \lambda}{D} \rightarrow n_1 \operatorname{sen}(\theta_1) = n_2 \operatorname{sen}(\theta_2) \rightarrow \frac{1}{s} + \frac{1}{s'} = \frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

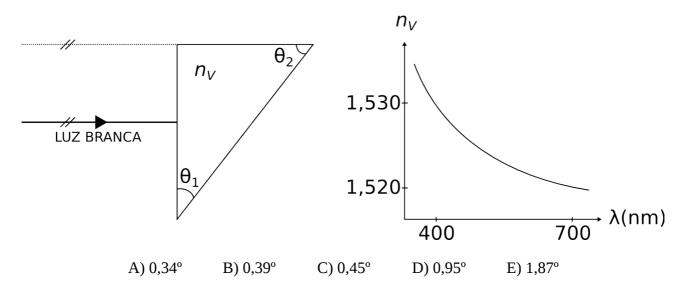
$$m = \frac{h'}{h} = \frac{-s'}{s} \rightarrow v = \lambda f = \frac{c}{n} = \frac{\lambda_0 f}{n}$$

Questão 1	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 2	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 3	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 4	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 5	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 6	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 7	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 8	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 9	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 10	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 11	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 12	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 13	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)

	TURMA:
NOME:	Nota:
PROF.:	


Importante: Assine a primeira página do cartão de questões e a folha do cartão de respostas.

- 1)Leia os enunciados com atenção.
- 2) Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar erros.
- 3)A não ser que seja instruído diferentemente: Assinale uma das alternativas das questões;
- 4)Nas questões com caráter numérico assinale a resposta mais próxima da obtida por você.


- 1) Considere a figura abaixo, que mostra a tela de visualização de um experimento de Fenda Dupla.
- (i) O que acontecerá com espaçamento entre as franjas se o comprimento de onda da luz incidente for diminuído? (ii) O que acontecerá com espaçamento entre as franjas se o espaçamento entre as fendas for diminuído?

- A) i- aumenta / ii- aumenta
- B) i- aumenta / ii- diminui
- C) i- diminui / ii- aumenta
- D) i- diminui / ii- diminui
- E) i- aumenta / ii- aumenta
- 2) Um raio de luz incide na fronteira entre dois materiais transparentes, e é totalmente refletido, como mostrado na figura. O que se pode concluir sobre os índices de refração dos materiais?
- A) $n1 \ge n2$
- B) n1 > n2
- C) n1 = n2
- D) $n2 \ge n1$
- E) n2 > n1

- 3) Uma lente convergente tem distância focal f. Um objeto é localizado entre f e 2f em relação a uma linha perpendicular ao centro da lente. A imagem formada é localizada em qual distância da lente?
- A) 2f
- B) entre f e 2f
- C) f
- D) entre a lente e f
- E) mais distante que 2f.
- 4) Uma lente é utilizada para a formação de uma imagem de um objeto que é colocado a sua frente.
- A) Se a lente é convergente, a imagem não pode ser virtual.
- B) Se a imagem é real, ela deve ser invertida.
- C) Se a imagem é real, ela deve ser direita.
- D) Se a imagem é virtual, ela deve ser invertida.
- E) Se a imagem é virtual, a lente tem que ser divergente.
- 5) Um espelho côncavo tem raio de curvatura de 40cm. A que distância do espelho um objeto deve ser posicionado a fim de criar uma imagem direita três vezes maior do que a altura do objeto?
 - A) 27cm
- B) 30cm
- C) 20cm
- D) 53cm
- E) 60cm
- F) 90cm
- 6) Uma fenda dupla é iluminada simultaneamente com luz laranja de 600 nm e com outra onda de comprimento de onda desconhecido. A franja brilhante correspondente a m=4 devido ao comprimento de onda desconhecido se sobrepõe à franja clara laranja correspondente a m=2. Qual é o valor do comprimento de onda desconhecido?
 - A) 300nm
- B) 450m
- C) 550nm
- D) 650nm
- E) 750nm
- 7) Luz branca entra em um prisma θ_1 =40°, θ_2 =50°, 90° como indicado na figura. A curva de dispersão fornece o índice de refração do material do prisma para diversos comprimentos de onda. Qual é o ângulo entre os feixes de luz violeta (400nm) e vermelho (700nm) quando estes saem do prisma? Considere n_{ar} =1,000.

- 8) Luz verde, de comprimento de onda igual a 500 nm, incide sobre duas fendas estreitas, de largura 0,1 mm e espaçadas uma da outra por 0,5 mm. Qual máximo de interferência será cancelado pelo segundo mínimo de difração?
- A) O segundo.
- B) O quinto.
- C) O décimo.
- D) O décimo quinto.
- E) O vigésimo.
- F) O quinquagésimo.
- G) O centésimo.
- H) Nenhum.
- 9) Uma fonte de luz branca é constituído de uma mistura das seguintes cores: azul (comprimento de onda de 400 nm), verde (comprimento de onda de 500 nm), laranja (comprimento de onda de 600 nm) e vermelho (comprimento de onda de 700 nm). Um estudante observa os padrões de interferência gerados por esta luz quando ela incide sobre uma rede de difração com 100 linhas/mm em um anteparo a 2,0 metros de distância. Qual o espaçamento entre os primeiros máximos de interferência das cores azul e laranja? (Considere, para a resolução deste problema, a aproximação para pequenos ângulos)
- A) 2,0 cm.
- B) 4,0 cm.
- C) 6,0 cm.
- D) 8,0 cm.
- E) 10,0 cm.
- 10) Um estudante observa o comportamento de um laser incidindo em um interferômetro de Michelson. Após anotar o quanto teve de mover um dos espelhos para contar a passagem de 100 franjas luminosas, ele retorna o interferômetro à sua posição original e troca o laser utilizado por outro de MAIOR comprimento de onda. I) Se ele andar a mesma distância com o espelho, ele contará mais ou menos franjas luminosas? II) Para contar a passagem do mesmo número de franjas luminosas, ele terá de mover mais ou menos o espelho?
- A) I mais; II menos.
- B) I mais; II mais.
- C) I menos; II menos.
- D) I menos; II mais.
- E) É impossível afirmar sem saber quanto o espelho andou no primeiro experimento.

- 11) Uma pessoa segura uma lente convergente a 8,0 cm de um objeto de 2,0 cm de extensão, vendo uma imagem virtual de 4,0 cm de extensão. Qual a distância focal desta lente?
- A) 16,0 cm
- B) 15,0 cm
- C) 12,0 cm
- D) 10,0 cm
- E) 8,0 cm
- F) 2,0 cm
- 12) Um raio luminoso incide com um ângulo de 30° em uma janela cujo vidro possui 1,0 cm de espessura e índice de refração de 1,50. Marca-se a posição, em uma parede a 1,0 m de distância da janela, em que o raio luminoso a atinge após atravessar o vidro, bem como a posição na qual ele a atinge quando a janela está aberta (i.e., o raio não sofre mudança de meio em sua trajetória). Ao aumentar em 20% a espessura do vidro, o que ocorre com i) o ângulo com que o raio deixa o vidro; e ii) a distância entre as posições com que o raio atinge a parede com a janela fechada e aberta? Considere o índice de refração do ar como sendo $n_{ar} = 1,00$.
- A) i) Aumenta; ii) Aumenta
- B) i) Aumenta; ii) Diminui
- C) i) Diminui; ii) Aumenta
- D) i) Diminui; ii) Diminui
- E) i) Não muda; ii) Aumenta
- F) i) Não muda; ii) Diminui
- 13) Uma pessoa mede 1,70 m de altura. Qual a menor altura possível de um espelho plano para que esta pessoa consiga se enxergar completamente nele?
- A) 80,0 cm
- B) 85,0 cm
- C) 90,0 cm
- D) 95,0 cm
- E) 100,0 cm
- F) 105,0 cm
- G) 110,0 cm

$$1 mm = 1,0 \ X \ 10^{-3} \ m \quad \blacklozenge \ 1 \ \mu m = 1,0 \ X \ 10^{-6} \ m \quad \blacklozenge \ 1 \ nm = 1,0 \ X \ 10^{-9} \ m$$

$$D(x,t) = Asen(kx \pm wt + \phi_0) = Asen\left(2\pi \left(\frac{x}{\lambda} \pm \frac{t}{T}\right) + \phi_0\right)$$

$$Asen(kx - wt + \phi_1) + Asen(kx + wt + \phi_2) = 2 \ Acos\left(wt + \frac{\phi_2 - \phi_1}{2}\right) \times sen\left(kx + \frac{\phi_1 + \phi_2}{2}\right)$$

$$Asen(k_1x - w_1t) + Asen(k_2x - w_2t) = 2 \ Acos\left(\frac{k_1 - k_2}{2}x - \frac{w_1 - w_2}{2}t\right) \times sen\left(\frac{k_1 + k_2}{2}x - \frac{w_1 + w_2}{2}t\right)$$

$$v_{som} \approx 340 \ m/s \quad \blacklozenge \ c = 3,0 \times 10^8 \ m/s \quad \blacklozenge \ Interferometria: \Delta m = \frac{2\Delta L}{\lambda}; m = 0,1,2...$$

$$\beta = (10 \ dB) \log_{10}\left(\frac{I}{I_0}\right) \beta_{relativo} = (10 \ dB) \log_{10}\left(\frac{I_2}{I_1}\right) I_0 = 1,0 \ X \ 10^{-12} \frac{W}{m^2}. \quad \blacklozenge \ v_{corda} = \sqrt{\frac{T}{\mu}}$$

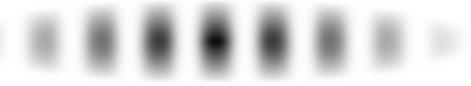
$$Tubo_{abert - abert}: L = m \cdot \frac{\lambda}{2}; m = 1,2,3,4... \quad Tubo_{abrt - fec \ hd}: L = n \cdot \frac{\lambda}{4}; n = 1,3,5,7...$$

Máx. de interferência: $dsen(\theta_{\scriptscriptstyle m})=m\lambda$; $m=0,\pm 1,\pm 2,... \spadesuit$ Mín. de difração: $asen(\theta_{\scriptscriptstyle p})=p\lambda$; $p=\pm 1,\pm 2,...$

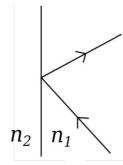
Mín. difração circular:
$$\theta_1 = \frac{1,22 \lambda}{D} \rightarrow n_1 \operatorname{sen}(\theta_1) = n_2 \operatorname{sen}(\theta_2) \rightarrow \frac{1}{s} + \frac{1}{s'} = \frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$m = \frac{h'}{h} = \frac{-s'}{s} \rightarrow v = \lambda f = \frac{c}{n} = \frac{\lambda_0 f}{n}$$

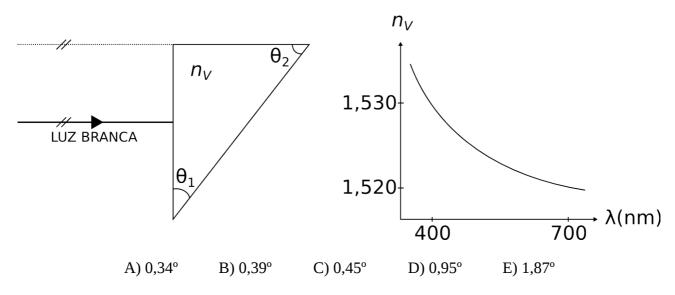
Questão 1	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 2	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 3	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 4	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 5	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 6	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 7	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 8	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 9	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 10	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 11	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 12	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 13	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)



	TURMA:
NOME:	Nota:
PROF.:	


Importante: Assine a primeira página do cartão de questões e a folha do cartão de respostas.

- 1)Leia os enunciados com atenção.
- 2) Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar erros.
- 3)A não ser que seja instruído diferentemente: Assinale uma das alternativas das questões;
- 4)Nas questões com caráter numérico assinale a resposta mais próxima da obtida por você.


- 1) Considere a figura abaixo, que mostra a tela de visualização de um experimento de Fenda Dupla.
- (i) O que acontecerá com espaçamento entre as franjas se o comprimento de onda da luz incidente for aumentado? (ii) O que acontecerá com espaçamento entre as franjas se o espaçamento entre as fendas for diminuído?

- A) i- aumenta / ii- aumenta
- B) i- aumenta / ii- diminui
- C) i- diminui / ii- aumenta
- D) i- diminui / ii- diminui
- E) i- aumenta / ii- diminui
- 2) Um raio de luz incide na fronteira entre dois materiais transparentes, e é totalmente refletido, como mostrado na figura. O que se pode concluir sobre os índices de refração dos materiais?
- A) $n1 \ge n2$
- B) n1 > n2
- C) n1 = n2
- D) $n2 \ge n1$
- E) n2 > n1

- 3) Uma lente convergente tem distância focal f. Um objeto é localizado entre f e 2f em relação a uma linha perpendicular ao centro da lente. A imagem formada é localizada em qual distância da lente?
- A) 2f
- B) entre f e 2f
- C) f
- D) entre a lente e f
- E) mais distante que 2f.
- 4) Uma lente é utilizada para a formação de uma imagem de um objeto que é colocado a sua frente.
- A) Se a lente é convergente, a imagem não pode ser virtual.
- B) Se a imagem é real, ela deve ser invertida.
- C) Se a imagem é real, ela deve ser direita.
- D) Se a imagem é virtual, ela deve ser invertida.
- E) Se a imagem é virtual, a lente tem que ser divergente.
- 5) Um espelho côncavo tem raio de curvatura de 30cm. A que distância do espelho um objeto deve ser posicionado a fim de criar uma imagem direita três vezes maior do que a altura do objeto?
 - A) 27cm
- B) 30cm
- C) 20cm
- D) 53cm
- E) 60cm
- F) 90cm
- 6) Uma fenda dupla é iluminada simultaneamente com luz laranja de 600 nm e com outra onda de comprimento de onda desconhecido. A franja brilhante correspondente a m=4 devido ao comprimento de onda desconhecido se sobrepõe à franja clara laranja correspondente a m=5. Qual é o valor do comprimento de onda desconhecido?
 - A) 300nm
- B) 450m
- C) 550nm
- D) 650nm
- E) 750nm
- 7) Luz branca entra em um prisma θ_1 =30°, θ_2 =60°, 90° como indicado na figura. A curva de dispersão fornece o índice de refração do material do prisma para diversos comprimentos de onda. Qual é o ângulo entre os feixes de luz violeta (400nm) e vermelho (700nm) quando estes saem do prisma? Considere n_{ar} =1,000.

- 8) Luz verde, de comprimento de onda igual a 500 nm, incide sobre duas fendas estreitas, de largura 0,1 mm e espaçadas uma da outra por 0,5 mm. Qual máximo de interferência será cancelado pelo terceiro mínimo de difração?
- A) O segundo.
- B) O quinto.
- C) O décimo.
- D) O décimo quinto.
- E) O vigésimo.
- F) O quinquagésimo.
- G) O centésimo.
- H) Nenhum.
- 9) Uma fonte de luz branca é constituído de uma mistura das seguintes cores: azul (comprimento de onda de 400 nm), verde (comprimento de onda de 500 nm), laranja (comprimento de onda de 600 nm) e vermelho (comprimento de onda de 700 nm). Um estudante observa os padrões de interferência gerados por esta luz quando ela incide sobre uma rede de difração com 100 linhas/mm em um anteparo a 2,0 metros de distância. Qual o espaçamento entre os primeiros máximos de interferência das cores azul e vermelho? (Considere, para a resolução deste problema, a aproximação para pequenos ângulos)
- A) 2,0 cm.
- B) 4,0 cm.
- C) 6,0 cm.
- D) 8,0 cm.
- E) 10,0 cm.
- 10) Um estudante observa o comportamento de um laser incidindo em um interferômetro de Michelson. Após anotar o quanto teve de mover um dos espelhos para contar a passagem de 100 franjas luminosas, ele retorna o interferômetro à sua posição original e troca o laser utilizado por outro de MENOR comprimento de onda. I) Para contar a passagem do mesmo número de franjas luminosas, ele terá de mover mais ou menos o espelho? II) Se ele andar a mesma distância com o espelho, ele contará mais ou menos franjas luminosas?
- A) I mais; II menos.
- B) I mais; II mais.
- C) I menos; II menos.
- D) I menos; II mais.
- E) É impossível afirmar sem saber quanto o espelho andou no primeiro experimento.

- 11) Uma pessoa segura uma lupa a 8,0 cm de um objeto de 2,0 cm de extensão, vendo uma imagem virtual de 10,0 cm de extensão. Qual a distância focal desta lente?
- A) 16,0 cm
- B) 15,0 cm
- C) 12,0 cm
- D) 10,0 cm
- E) 8,0 cm
- F) 2,0 cm
- 12) Um raio luminoso incide com um ângulo de 30° em uma janela cujo vidro possui 1,0 cm de espessura e índice de refração de 1,50. Marca-se a posição, em uma parede a 1,0 m de distância da janela, em que o raio luminoso a atinge após atravessar o vidro, bem como a posição na qual ele a atinge quando a janela está aberta (i.e., o raio não sofre mudança de meio em sua trajetória). Ao aumentar em 20% a espessura do vidro, o que ocorre com i) o ângulo com que o raio deixa o vidro; e ii) a distância entre as posições com que o raio atinge a parede com a janela fechada e aberta? Considere o índice de refração do ar como sendo $n_{ar} = 1,00$.
- A) i) Aumenta; ii) Aumenta
- B) i) Aumenta; ii) Diminui
- C) i) Diminui; ii) Aumenta
- D) i) Diminui; ii) Diminui
- E) i) Não muda; ii) Aumenta
- F) i) Não muda; ii) Diminui
- 13) Uma pessoa mede 1,90 m de altura. Qual a menor altura possível de um espelho plano para que esta pessoa consiga se enxergar completamente nele?
- A) 80,0 cm
- B) 85,0 cm
- C) 90,0 cm
- D) 95,0 cm
- E) 100,0 cm
- F) 105,0 cm
- G) 110,0 cm

$$1 mm = 1,0 \ X \ 10^{-3} \ m \ \bullet \ 1 \ \mu m = 1,0 \ X \ 10^{-6} \ m \ \bullet \ 1 \ nm = 1,0 \ X \ 10^{-9} \ m$$

$$D(x,t) = Asen(kx \pm wt + \phi_0) = Asen\left(2\pi \left(\frac{x}{\lambda} \pm \frac{t}{T}\right) + \phi_0\right)$$

$$Asen(kx - wt + \phi_1) + Asen(kx + wt + \phi_2) = 2 \ Acos\left(wt + \frac{\phi_2 - \phi_1}{2}\right) \times sen\left(kx + \frac{\phi_1 + \phi_2}{2}\right)$$

$$Asen(k_1x - w_1t) + Asen(k_2x - w_2t) = 2 \ Acos\left(\frac{k_1 - k_2}{2}x - \frac{w_1 - w_2}{2}t\right) \times sen\left(\frac{k_1 + k_2}{2}x - \frac{w_1 + w_2}{2}t\right)$$

$$v_{som} \approx 340 \ m/s \ \bullet \ c = 3,0 \times 10^8 \ m/s \ \bullet \ Interferometria: \Delta m = \frac{2\Delta L}{\lambda}; m = 0,1,2...$$

$$\beta = (10 \ dB) \log_{10}\left(\frac{I}{I_0}\right) \beta_{relativo} = (10 \ dB) \log_{10}\left(\frac{I_2}{I_1}\right) I_0 = 1,0 \ X \ 10^{-12} \frac{W}{m^2}. \ \bullet \ v_{corda} = \sqrt{\frac{T}{\mu}}$$

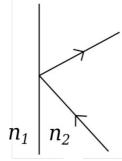
$$Tubo_{abert - abert}: L = m \cdot \frac{\lambda}{2}; m = 1,2,3,4... \quad Tubo_{abrt - fec \ hd}: L = n \cdot \frac{\lambda}{4}; n = 1,3,5,7...$$

Máx. de interferência: $dsen(\theta_{\it m})=m\lambda$; $m=0,\pm 1,\pm 2,... \spadesuit$ Mín. de difração: $asen(\theta_{\it p})=p\lambda$; $p=\pm 1,\pm 2,... \spadesuit$ Mín. de difração: $asen(\theta_{\it p})=p\lambda$; $p=\pm 1,\pm 2,... \spadesuit$

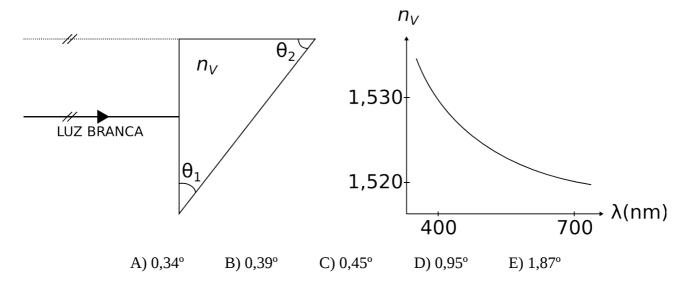
$$\begin{aligned} \text{M\'in. difra\'{c}\'{a}o circular:} & \; \theta_1 = \frac{1,22 \, \lambda}{D} \quad \blacklozenge \quad n_1 \, \text{sen} \left(\theta_1\right) = n_2 \, \text{sen} \left(\theta_2\right) \quad \blacklozenge \quad \frac{1}{s} + \frac{1}{s'} = \frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \\ m = \frac{h'}{h} = \frac{-s'}{s} \quad \blacklozenge \quad v = \lambda f = \frac{c}{n} = \frac{\lambda_0 f}{n} \end{aligned}$$

Questão 1	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 2	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 3	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 4	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 5	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 6	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 7	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 8	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 9	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 10	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 11	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 12	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 13	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)

	TURMA:
NOME:	Nota:
PROF.:	


Importante: Assine a primeira página do cartão de questões e a folha do cartão de respostas.

- 1)Leia os enunciados com atenção.
- 2) Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar erros.
- 3)A não ser que seja instruído diferentemente: Assinale uma das alternativas das questões;
- 4)Nas questões com caráter numérico assinale a resposta mais próxima da obtida por você.


- 1) Considere a figura abaixo, que mostra a tela de visualização de um experimento de Fenda Dupla.
- (i) O que acontecerá com espaçamento entre as franjas se o comprimento de onda da luz incidente for aumentado? (ii) O que acontecerá com espaçamento entre as franjas se a distância entre as fendas e a tela for diminuída?

- A) i- aumenta / ii- aumenta
- B) i- aumenta / ii- diminui
- C) i- diminui / ii- aumenta
- D) i- diminui / ii- diminui
- E) i- aumenta / ii- aumenta
- 2) Um raio de luz incide na fronteira entre dois materiais transparentes, e é totalmente refletido, como mostrado na figura. O que se pode concluir sobre os índices de refração dos materiais?
- A) $n1 \ge n2$
- B) n1 > n2
- C) n1 = n2
- D) $n2 \ge n1$
- E) n2 > n1

- 3) Uma lente convergente tem distância focal f. Um objeto é localizado entre f e 2f em relação a uma linha perpendicular ao centro da lente. A imagem formada é localizada em qual distância da lente?
- A) 2f
- B) entre f e 2f
- C) f
- D) entre a lente e f
- E) mais distante que 2f.
- 4) Uma lente é utilizada para a formação de uma imagem de um objeto que é colocado a sua frente.
- A) Se a lente é convergente, a imagem não pode ser virtual.
- B) Se a imagem é real, ela deve ser direita.
- C) Se a imagem é real, ela deve ser invertida.
- D) Se a imagem é virtual, ela deve ser invertida.
- E) Se a imagem é virtual, a lente tem que ser divergente.
- 5) Um espelho côncavo tem raio de curvatura de 30cm. A que distância do espelho um objeto deve ser posicionado a fim de criar uma imagem direita três vezes maior do que a altura do objeto?
 - A) 27cm
- B) 30cm
- C) 20cm
- D) 53cm
- E) 60cm
- F) 90cm
- 6) Uma fenda dupla é iluminada simultaneamente com luz laranja de 600 nm e com outra onda de comprimento de onda desconhecido. A franja brilhante correspondente a m=4 devido ao comprimento de onda desconhecido se sobrepõe à franja clara laranja correspondente a m=3. Qual é o valor do comprimento de onda desconhecido?
 - A) 300nm
- B) 450m
- C) 550nm
- D) 650nm
- E) 750nm
- 7) Luz branca entra em um prisma θ_1 =40°, θ_2 =50°, 90° como indicado na figura. A curva de dispersão fornece o índice de refração do material do prisma para diversos comprimentos de onda. Qual é o ângulo entre os feixes de luz violeta (400nm) e vermelho (700nm) quando estes saem do prisma? Considere n_{ar} =1,000.

- 8) Luz verde, de comprimento de onda igual a 500 nm, incide sobre duas fendas estreitas, de largura 0,1 mm e espaçadas uma da outra por 0,5 mm. Qual máximo de interferência será cancelado pelo quarto mínimo de difração?
- A) O segundo.
- B) O quinto.
- C) O décimo.
- D) O décimo quinto.
- E) O vigésimo.
- F) O quinquagésimo.
- G) O centésimo.
- H) Nenhum.
- 9) Uma fonte de luz branca é constituído de uma mistura das seguintes cores: azul (comprimento de onda de 400 nm), verde (comprimento de onda de 500 nm), laranja (comprimento de onda de 600 nm) e vermelho (comprimento de onda de 700 nm). Um estudante observa os padrões de interferência gerados por esta luz quando ela incide sobre uma rede de difração com 100 linhas/mm em um anteparo a 2,0 metros de distância. Qual o espaçamento entre os primeiros máximos de interferência das cores verde e vermelha? (Considere, para a resolução deste problema, a aproximação para pequenos ângulos)
- A) 2,0 cm.
- B) 4,0 cm.
- C) 6,0 cm.
- D) 8,0 cm.
- E) 10,0 cm.
- 10) Um estudante observa o comportamento de um laser incidindo em um interferômetro de Michelson. Após anotar o quanto teve de mover um dos espelhos para contar a passagem de 100 franjas luminosas, ele retorna o interferômetro à sua posição original e troca o laser utilizado por outro de MENOR comprimento de onda. I) Se ele andar a mesma distância com o espelho, ele contará mais ou menos franjas luminosas? II) Para contar a passagem do mesmo número de franjas luminosas, ele terá de mover mais ou menos o espelho?
- A) I mais; II menos.
- B) I mais; II mais.
- C) I menos; II menos.
- D) I menos; II mais.
- E) É impossível afirmar sem saber quanto o espelho andou no primeiro experimento.

- 11) Uma pessoa segura uma lente convergente a 8,0 cm de um objeto de 3,0 cm de extensão, vendo uma imagem virtual de 6,0 cm de extensão. Qual a distância focal desta lente?
- A) 16,0 cm
- B) 15,0 cm
- C) 12,0 cm
- D) 10,0 cm
- E) 8,0 cm
- F) 2,0 cm
- 12) Um raio luminoso incide com um ângulo de 30° em uma janela cujo vidro possui 1,0 cm de espessura e índice de refração de 1,50. Marca-se a posição, em uma parede a 1,0 m de distância da janela, em que o raio luminoso a atinge após atravessar o vidro, bem como a posição na qual ele a atinge quando a janela está aberta (i.e., o raio não sofre mudança de meio em sua trajetória). Ao aumentar em 20% a espessura do vidro, o que ocorre com i) o ângulo com que o raio deixa o vidro; e ii) a distância entre as posições com que o raio atinge a parede com a janela fechada e aberta? Considere o índice de refração do ar como sendo $n_{ar} = 1,00$.
- A) i) Aumenta; ii) Aumenta
- B) i) Aumenta; ii) Diminui
- C) i) Diminui; ii) Aumenta
- D) i) Diminui; ii) Diminui
- E) i) Não muda; ii) Aumenta
- F) i) Não muda; ii) Diminui
- 13) Uma pessoa mede 1,60 m de altura. Qual a menor altura possível de um espelho plano para que esta pessoa consiga se enxergar completamente nele?
- A) 80,0 cm
- B) 85,0 cm
- C) 90,0 cm
- D) 95,0 cm
- E) 100,0 cm
- F) 105,0 cm
- G) 110,0 cm

Máx. de interferência: $dsen(\theta_m) = m\lambda$; $m = 0, \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $p = \pm 1, \pm 2,... \blacklozenge Mín. de difração: <math>asen(\theta_p) = p\lambda$; $asen(\theta_p) = p\lambda$; $asen(\theta_p$

$$\begin{aligned} \text{M\'in. difração circular:} \ \ \theta_1 &= \frac{1,22\,\lambda}{D} \quad \blacklozenge \quad n_1 \, sen \left(\theta_1\right) = n_2 \, sen \left(\theta_2\right) \quad \blacklozenge \quad \frac{1}{s} + \frac{1}{s'} = \frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \\ m &= \frac{h'}{h} = \frac{-s'}{s} \quad \blacklozenge \quad v = \lambda f = \frac{c}{n} = \frac{\lambda_0 f}{n} \end{aligned}$$

Questão 1	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 2	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 3	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 4	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 5	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 6	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 7	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 8	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 9	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 10	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 11	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 12	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
Questão 13	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)